Localization Derived Category Some Fundamental Properties of $Ch(\mathcal{A})$ Triangulated Categories Back to Category of Complexes Added to the talk

Inverting Arrows and Derived Categories

Satya Mandal, U. Kansas IISER, Pune

August 2, 2013

Definition

Let S be a collection of morphisms in a category \mathcal{C} . A localization of \mathcal{C} with respect to S

- ▶ is a category $S^{-1}C$ with a functor $q:C\longrightarrow S^{-1}C$
 - ▶ q(s) is an isomorphism for all $s \in S$.
 - ▶ Given any functor $f: \mathcal{C} \longrightarrow \mathcal{D}$ such that f(s) is an isomorphism for all $s \in S$, there is a unique functor $g: S^{-1}\mathcal{C} \longrightarrow \mathcal{D}$ such that $gq \equiv f$ are naturally equivalent. Diagrammatically:

$$C \xrightarrow{q} S^{-1}C \quad commutes \ up \ to \ natural \ equivalence.$$

$$f \xrightarrow{\exists ! \mid g} \Upsilon$$

Existance, uniqueness and comments

- ▶ Existence is of $S^{-1}C$ is not guaranteed.
- If exists, any two localizations are naturally equivalent.
- ▶ Obvious examples are our usual localization $S^{-1}A$ of commutative rings A along multiplicative sets S.
- ▶ **Remark.** The defintion of localization did not require that *S* is closed under isomorphisms.

Multiplicative System: Prelude

Suppose $f: X \longrightarrow Y, t: X \longrightarrow Z, s: W \longrightarrow Y$ be morphisms in C, with $s, t \in S$. Required to define morphisms

$$ft^{-1}, s^{-1}f \in S^{-1}C: Z \xrightarrow{t} X, X \xrightarrow{f} Y$$

$$\downarrow^{f} \qquad \downarrow^{s}$$

$$Y \qquad \qquad \downarrow^{s}$$

$$Y \qquad \qquad \downarrow^{s}$$

- ▶ **Question:** What would be the relationship between the collections $\{ft^{-1}\}, \{s^{-1}f\}$ of "left, right fractions"? Are they same, disjoint or none?
- ▶ Define "multiplicative systems" S, so that $\{ft^{-1}\} = \{s^{-1}f\}$ are same.

Definition

A collection S of morphisms in a category $\mathcal C$ is called a multiplicative system, if the following three (four) conditions hold:

- ▶ (Closure): If $s, t \in S$ are composable then $st \in S$.
- ▶ (**Ore Condition**): Suppose morphisms g, t be given, with $t \in S$. Then, there are morphisms s, f with $s \in S$ such that the diagram

$$W - \frac{f}{-} > Z \qquad commute$$

$$S \mid \in S \qquad t \mid \in S$$

$$X \xrightarrow{g} Y$$

Continued

• (Ore Condition: Continued): The symmetric condition also holds: Suppose morphisms φ, ψ be given, with $\psi \in S$. Then, there are morphisms γ, θ with $\theta \in S$ such that the diagram

$$A \xrightarrow{\varphi} B \qquad commute$$

$$\psi \downarrow \in S \qquad \theta \mid \in S \qquad \forall$$

$$C - \frac{\gamma}{\gamma} > D$$

(Ore condition ensures $\{ft^{-1}\}=\{s^{-1}f\}$.)

Continued

▶ (Cancellation): For morphisms $f, g: X \longrightarrow Y$

Added to the talk

$$sf = sg$$
 for some $s \in S \iff ft = st$ for some $t \in S$.

If $Mor_{\mathcal{C}}(*,*)$ have group structures then cancellation means

$$sf = 0$$
 for some $s \in S \iff ft = 0$ for some $t \in S$.

▶ (**Identity**): For all objects $X \in C$, the identity $1_X \in S$.

Left and Right Fractions

Suppose S is a multiplicative system in C.

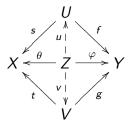
▶ By a left fraction fs^{-1} we mean a chain C:

$$fs^{-1}: X \stackrel{s}{\longleftarrow} Z \stackrel{f}{\longrightarrow} Y$$
 where $s \in S$.

▶ Let $L\mathcal{F}(\mathcal{C}, S)$ be the collection of all left fractions.

Equivalence of Fractions

Two left fractions $fs^{-1}, gt^{-1}: X \longrightarrow Y$ are defined to be equivalent, if there is another left fraction $\varphi\theta^{-1}: X \longrightarrow Y$ so that the diagram



commutes for some u, v.

▶ This is an equivalence relation on $L\mathcal{F}(\mathcal{C}, S)$.

Composition of Fractions

Let $gs^{-1}: X \longrightarrow Y, ft^{-1}: Y \longrightarrow Z$ be two left fractions. Use Ore Condition and complete the commutative diagram:

Define composition $(ft^{-1})(gs^{-1}) := (fu)(sv)^{-1}$.

Compostion is well defined upto equivalence.

The Category $S^{-1}C$

Let S be a multiplicative system in a (small) category C. Let $S^{-1}C$ be the category defined as follows:

- ▶ The objects of $S^{-1}C$ are same as the objects of C.
- ► For objectes *X*, *Y*, let

 $Mor_{S^{-1}C}(X, Y) := set of equivalence class of left fractions$

Existance Theorem of Gabriel-Zisman

- ▶ Define the "universal Functor" $q: \mathcal{C} \longrightarrow S^{-1}\mathcal{C}$ as follows
 - ▶ For objects $X \in \mathcal{C}$, let q(X) = X.
 - ▶ For a morphism $f: X \longrightarrow Y \in \mathcal{C}$ define

$$q(f) = f(1_X^{-1}): X \xrightarrow{1_X} X \xrightarrow{f} Y$$

- ▶ **Theorem.** For a multiplicative system S in a category C,localization $S^{-1}C$ exists.
- ▶ Namely, the functor *q* has the universal property of localization.

Categories of Modules

Let A be a noetherian commutative ring with dim A = d. We use the notation \mathcal{A} for the following categories.

- Let $A = \mathcal{M}(A) = FGM(A)$ be the category of finitely generated A-modules.
- Let $A = \mathcal{F}L(A)$ be the category of finitely generated A-modules with finite length.
- ▶ More generally, for inntegers $r \ge 0$, let be $\mathcal{A} = \mathcal{F}(A, r)$ the category of finitely generated A-modules M with

$$co \dim(Supp(M)) \ge k$$
; i.e. $Height(Ann(M)) \ge r$.

Abelian Categories

These "A"s are abelian categories. This means

- A has a zero.
- \blacktriangleright Hom(M, N) have abelian group structures.
- A is closed under finite product, kernel and cokernel.
- Every injective morphism is kernel of its cokernel.
- Every surjective morphism is cokernel of its kernel.

We will consider only the above abelian categories of modules.

The category Ch(A)

Let A be an abelian category as above.

- ▶ Then, Ch(A) will denote the category of chain complexes defined as follows:
 - ▶ The objects in Ch(A) are the chain complexes of objects in A).
 - ▶ For $A_{\bullet}, B_{\bullet} \in Ch(\mathcal{A})$, the morphisms $Hom_{Ch(\mathcal{A})}(A_{\bullet}, B_{\bullet})$ is defined to be the group of chain complex maps.

The category $\mathbf{K}(\mathcal{A})$

The category K(A) is defined as follows:

- ▶ Objects of K(A) are same as that of Ch(A).
- ▶ For $A_{\bullet}, B_{\bullet} \in \mathbf{K}(A)$, the morphisms are defined as

$$Hom_{\mathbf{K}(A)}(A_{\bullet}, B_{\bullet}) := \frac{Hom_{Ch(A)}(A_{\bullet}, B_{\bullet})}{\sim}$$

where \sim denotes the homotopy equivalence.

Subcategories of $\mathit{Ch}(\mathcal{A})$ and $\mathbf{K}(\mathcal{A})$

- ▶ $Ch^b(A)$ will denote the "full subcategory" of Ch(A) consisting of bounded complexes.
- Similarly, K^b(A) will denote the "full subcategory" of K(A) consisting of bounded complexes.
- Similar other such subcategories are defined.

The Derived Category D(A)

Definition (see [W])

Let A be a (small) abelian category, as above.

- ▶ A morphism $\varphi: P_{\bullet} \longrightarrow Q_{\bullet} \in K(\mathcal{A})$, is said to be a quasi-isomorphism, if $H^{i}(\varphi)$ is an isomorphism, $\forall i$.
- Let S be the set of all quasi-isomorphisms in K(A). Then, S is a multiplicative system in K(A).
- ▶ The Derived Category D(A) is defined to be the localization $S^{-1}K(A)$.
- Likewise, we define the derived category $D^b(A)$ of bounded chain complexes is defined to be the localization $T^{-1}K^b(A)$, where T is set of all quasi-isomorphisms in

Shift or Translation in Ch(A)

- ▶ Given an object $P_{\bullet} \in Ch(\mathcal{A})$, let $(P_{\bullet}[-1])_n = P_{n-1}$. Then, $P_{\bullet}[-1]$ is an object in $Ch(\mathcal{A})$.
- ► Also, define

$$T: Ch(A) \longrightarrow Ch(A)$$
 by sending $P_{\bullet} \mapsto P_{\bullet}[-1]$.

Then, T is an equivalence of categories.

Cone Constrution

Suppose $u: P_{\bullet} \longrightarrow Q_{\bullet}$ is a map of chain complexes:

$$\cdots \longrightarrow P_{n+1} \longrightarrow P_n \xrightarrow{d_n^P} P_{n-1} \longrightarrow \cdots$$

$$\downarrow^{u_{n+1}} \qquad \downarrow^{u_n} \qquad \downarrow^{u_{n-1}}$$

$$\cdots \longrightarrow Q_{n+1} \longrightarrow Q_n \xrightarrow{d_n^Q} Q_{n-1} \longrightarrow \cdots$$

- ▶ Define $C_n = P_{n-1} \oplus Q_n$.
- ▶ Let $\partial_n : C_n \longrightarrow C_{n-1} = P_{n-2} \oplus Q_{n-1}$ be

$$\partial_n = \left(\begin{array}{cc} -d_{n-1}^P & 0 \\ -u_{n-1} & d_n^Q \end{array} \right)$$

Continued: Cone Constrution

- ▶ Then C_{\bullet} is an object in Ch(A) (i. e. a chain complex).
- ▶ C_{\bullet} is called the cone of u; also denoted by $C_{\bullet}(u)$.
- ▶ For each *n* there is an exact sequence

$$0 \longrightarrow Q_n \longrightarrow C_n \longrightarrow P_{n-1} \longrightarrow 0$$

This induces an exact sequence

$$0 \longrightarrow Q_{\bullet} \longrightarrow C_{\bullet} \longrightarrow P_{\bullet}[-1] \longrightarrow 0$$

$$\parallel$$

$$T(P_{\bullet})$$

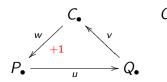
Triangles in Ch(A)

▶ The above leads to a long chain (not exact):

$$\cdots \longrightarrow P_{\bullet} \xrightarrow{u} Q_{\bullet} \longrightarrow C_{\bullet}(u)$$

$$\longrightarrow T(P_{\bullet}) \xrightarrow{T(u)} T(Q_{\bullet}) \longrightarrow T(C_{\bullet}(u) \longrightarrow \cdots$$

Such a chain is called (a jargon) a triangle and diagramatically represented as:



$$OR \qquad P_{\bullet} \xrightarrow{u} Q_{\bullet} \xrightarrow{v} C_{\bullet} \xrightarrow{w} TP_{\bullet}$$

Triangulated Categories K(A), D(A)

- ▶ We define and establish that K(A), D(A) are Triangulated Categories.
- ▶ In fact, the definition is abstraction of some of the properties of K(A), D(A).

The definition if Δ ed Categories

Definition

(see [W, 10.2.1]) A Triangulated Category K consists of the following

- ▶ It is an additive category **K**.
- ▶ **K** is equipped with a natural equivalence $T : \mathbf{K} \xrightarrow{\sim} \mathbf{K}$, to be called the translation functor.
- ▶ **K** is also equipped with a distinguished family of triangles (u, v, w) of morphisms in **K**, to be called exact triangles.
- ► The translation and the exact triangles satisfies the following axioms (TR1-4).

Morphism of exact triangles

Before we give the axioms, we define morphisms of triangles.

A morphism between two triangles (u, v, w), (u', v', w'), as in the diagram, is a triple (f, g, h) of morphisms in **K** such that

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} TA commutes.$$

$$\downarrow f \qquad \downarrow g \qquad \downarrow h \qquad \downarrow Tf \qquad \downarrow Tf \qquad \downarrow Tf \qquad \downarrow TA'$$

$$A' \xrightarrow{u'} B' \xrightarrow{v'} C' \xrightarrow{w'} TA'$$

Axiom TR1

- ightharpoonup Every morphism $u:A\longrightarrow B$ in **K** can be embedded inan exact triangle (u, v, w): $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} TA$
- for all object $A \in \mathbf{K}$

$$A \stackrel{1_A}{===} A \stackrel{0}{\longrightarrow} 0 \stackrel{0}{\longrightarrow} TA$$
 is an exact Δ .

Given an isomorphim of two triangles:

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} TA$$

$$\downarrow \downarrow f \qquad \downarrow \downarrow g \qquad \downarrow \downarrow h \qquad \downarrow \downarrow Tf$$

$$A' \xrightarrow{u'} B' \xrightarrow{v'} C' \xrightarrow{w'} TA'$$

Axiom TR2: (Rotation)

Suppose

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} TA$$
 is exact.

Then, so are

$$B \xrightarrow{v} C \xrightarrow{w} TA \xrightarrow{-Tu} TB$$

and

$$T^{-1}\bar{C} \xrightarrow{T^{-1}w} A \xrightarrow{u} B \xrightarrow{v} C$$

Axiom TR3: (Morphisms)

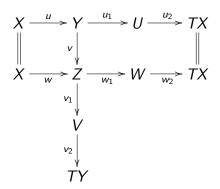
Given two exact triangles, as in the diagram, and morphisms $f, g, \exists a morphism h$,

Axiom TR4: (Octahedron)

The Octahedron axiom states how triangles over two morhisms u, v and the composition uv must interact.

▶ Suppose, two morphisms u, v are given. Consider triangels over u, v, w := vu as in the diagram:

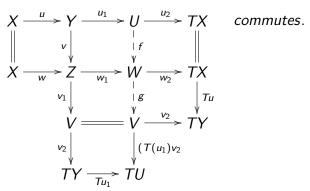
Continued: (Octahedron)



▶ By TR1, there is $f: U \longrightarrow W$ to fill in. The Contention is V will also sit below $f: U \longrightarrow W$.

Continued: (Octahedron)

Foramally, $\exists f, g$ that completes the following diagram:



► The third vertical line is also exact.

K(A) is Triangulated

Theorem

K(A) is a Triangulated category.

- Given an object in $P_{\bullet} \in K(A)$, define translation $TP_{\bullet} := P_{\bullet}[-1]$.
- ▶ A triangle (u, v, w) is declaired exact, if it is isomorphic to the cone of a morphism $u : P_{\bullet} \longrightarrow Q_{\bullet} \in K(A)$. Diagramtically:

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} TA \quad commutes.$$

$$\downarrow \wr \qquad \qquad \downarrow \wr \qquad \qquad \downarrow \wr$$

$$P_{\bullet} \xrightarrow{f} Q_{\bullet} \longrightarrow C[f]_{\bullet} \longrightarrow TP_{\bullet}$$

D(A) is Triangulated

Theorem

D(A) is a Triangulated category.

The triangulated structure is inherited from K(A).

The Proof

Only thing needs to the checked is that

$$A = A \longrightarrow 0 \longrightarrow TA$$
 is an exact Δ .

Let C be the cone of the identity map $1_A : A \xrightarrow{\sim} A$. Consider the diagram

$$A = A \longrightarrow C \longrightarrow TA$$

$$\parallel \qquad \parallel \qquad \downarrow \qquad \parallel$$

$$A = A \longrightarrow 0 \longrightarrow TA$$

- ▶ Now *C* is Homotopic to 0. (Routine Checking.)
- ► All the rectangles commute. (Routine Checking)

Derived Categories of Exact Categories

Suppose \mathcal{E} is an exact category.

- ▶ The homotopy category $K(\mathcal{E})$ and the Derive category $D(\mathcal{E})$ are defined as above.
- ▶ Everything said above works for $K(\mathcal{E})$ and $D(\mathcal{E})$.
- Let $\mathcal{P}(A)$ be the category of finitely generated projective A-modules. Then, $\mathcal{P}(A)$ is an exact category.
- ▶ The Derived category $D(\mathcal{P}(A))$ is a triangulated category.

- Weibel, Charles A. An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994. xiv+450 pp.
- PAUL BALMER, Triangular Witt Groups Part 1: The 12-Term Localization Exact Sequence, K-Theory 19: 311?-63, 2000